
Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.9 No.2, 2020, pp.4-10

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2020.9.2.2174

Manipuri Morphological Analysis

Y. Bablu Singh1, Th. Mamata Devi2 and Ch Yashawanta Singh3

1&2Computer Science Department, Manipur University, Manipur, India
3Linguistics Department, Manipur University, Canchipur, Manipur, India

E-mail: yumnambablu@gmail.com, mamta_th@rediffmail.com, chungkhamyash@gmail.com

Abstract - Morphological analysis is the basic foundation in
Natural Language Processing applications including Syntax
Parsing, Machine Translation (MT), Information Retrieval
(IR) and Automatic Indexing. Morphological Analysis can
provide valuable information for computer based linguistics
task such as Lemmatization and studies of internal structure of
the words or the feature values of the word. Computational
Morphology is the application of morphological rules in the
field of Computational Linguistics, and it is the emerging area
in AI, which studies the structure of words, which are formed
by combining smaller units of linguistics information, called
morphemes: the building blocks of words. It provides about
Semantic and Syntactic role in a sentence. It can analyze the
Manipuri word forms and produces grammatical information,
which is associated with the lexicon. Morphological Analyzer
for Manipuri language has been tested on 4500 Manipuri
lexicons in Shakti Standard Format (SSF) using Meitei Mayek
Unicode as source; thereby an accuracy of 84% has been
obtained on a manual check.
Keywords: Meitei Mayek, Morphological analysis; Machine
Translation; Computational Morphology, Information
Retrieval, SSF.

I. INTRODUCTION

The first step in natural language processing is to identify
words in a sentence. The process is called morphological
analysis. The Manipuri Morphological Analyzer is built
using the methodology of finite-state compilers and
algorithms, and the results are stored and run as finite-state
transducers. Manipuri language also known as Meiteilon
belongs to the Kuki-Chin [1] branch of the Tibeto-Burman
language, sub-family of Sino Tibetan Language. It is an
official language as well as a Lingua franca among the
various speech communities [2]. Manipuri has been adopted
as the medium of instruction and examination from the
primary to the high school stage. Meiteilon has been the
state language of Manipur since the 8thcentury A.D. It has
been recognized as the 8thscheduled language in the Indian
Constitution since 1992 [3]. Morphology consists of two
branches: Inflectional morphology and Derivational
morphology. Inflectional morphology is the study of those
processes of word formation where various inflectional
forms are formed from the existing stems [4].

Example:

Plurals: boroI–>boroIsiQ
Aspect: chai –>chaari

Derivational morphology is those processes of the word
formation where new words are formed from the existing
stems through the addition of morphemes. The meaning of
the resultant new word is different from the original word
and it often belongs to a different syntactic category [4].

Example:

Adjective to Verb: acAb –>cAb
Adjective to Adjective: acAb –>acAbgI
Noun to Adjective: cArIb –>acAb

II. PROBELEM STATEMENT

For the problem statement we will list five main objective
questions as follows:

1. What are morphological categories in Manipuri
Language?

2. What are computational morphological process in
agglutinative language like Manipuri?

3. What are rules involved in morphological process?
4. What is the computational model for Morphological

analysis in Manipuri Language?
5. What is the best approach for computational

Morphological analysis?

III. OBJECTIVES OF MORPHOLOGICAL
ANALYSIS

Meiteilon being agglutinative language is highly inflectional
language, which have the capability of generating more then
thousands of words from a single root. Hence
morphological analysis is vital for high-level applications to
understand various words or lexeme in our language. So
morphological analysis of Manipuri language forms the
foundation for applications related with Natural Language
Processing.

Agglutinative languages show high morpheme per word or
head word ratio and have complex morphotactics structures,
the absence of fusion at affix boundaries make the task of
segmentation fluent once the architecture or the model for
implementation of morphotactics is build. Here we are
listing our main objectives of morphological analysis:

4AJCST Vol.9 No.2 July-December 2020

(Received 28 May 2020; Accepted 15 July 2020; Available online 25 July 2020)

1. Identifying the morphological categories of Manipuri
Language.

2. Identifying the number of prefix, Suffix as per
category wise.

3. Identifying the morphological categories in Manipuri
Language.

4. Identifying the computational process in
agglutinative language, Manipuri.

5. Identifying the rules of morphological analysis in
Manipuri Language.

6. Identifying the best approached for morphological
analysis.

IV. METHODOLOGY

The process goes in four modules i.e.

1. Data collection module.
2. Classification module.
3. Analysis module.
4. Implementation module.

In data collection process we start making paradigm table in
category wise of word classification.

a).Lexical category can be classified in two class i.e.
Inflected and Uninflected, later Inflected can be sub
categorized in Major and Minor while Uninflected have
indeclinables like Postposition, Adverbs, Conjunction,
Interjections and Expressives.

Major word classes are:
 1) Noun (singular/plural) = n
 2) Verb = v
 3) Adjective = adj

Minor word classes are:
1) Adverb = adv

 2) Pronoun = pn
 3) Nlocative = nst

The possible values for Gender: m, f, n,mf,mn,fn, any .The
possible values for Number: sg, pl, dual, any. The possible
values for Person:1, 2, 3, any. The possible values for
Case:d(direct),o(oblique). The possible case marker: dir,
obl, ki, ku, ni, nu, lo, wo, yoVkkaetc. The possible feature
structure for the word which is unknown to morph is
<fsaf='word,unkn,,,,,,'>.

The possible feature structure for the punctuation mark
which is unknown to morph is <fsaf='⋅,punc,,,,,,'>.
The possible feature structure of the number is
<fsaf='88,num,,,,,,'>. The possible values for case name: ex:
nom, acc, dubi, etc.or 1, 2, 3

This file is read by morph in compiler mode during
paradigm-data input.

V. MORPHOLOGICAL ANALYZER

Morphological Analyzers perform morphological analysis.
There are some important approaches for executing
morphological analysis. But the two approaches, which are
used widely, are:

1. Finite State Machines Based Approach
2. Machine Learning Approach

A. Finite State Machines Based Approach

Section describes the Finite state machines approach used
for building Finite State Transducers(FST) based
morphological analyzers.

B.Resources

The main goal of this approach is to list all the possible
parses/analyses of an input word. In order to build a
morphological parser using an FST based approach, the
following resources are used in general:

1. Lexicons

Lexicon of a language is its vocabulary or the list of all
words in Manipuri or particular languages. It is an explicit
list of every word of the language. It is cumbersome to list
every word in a language. Hence generally computational
lexicons are used for this purpose. The Finite-state
automaton (FSA) is generally used to model lexicons. A
structured collection of the entire morpheme i.e. the root or
headwords and morphemes or affixes of the words are
collected [5].

TABLE I LEXICON TABLE

Sl. No. Lexicon Numbers
1 Headwords 13463
2 Suffixes of Noun 37
3 Suffixes of Pronoun 39
4 Numerals 32
5 Suffixes of Verb 100
6 Suffixes of Adverb 23
7 Suffixes of Adjective 31
8 Prefix 9

2.Morphotactics

This explains the morpheme ordering ex: the plural
morpheme follows the main noun morpheme. Example:
cars = car + N + pl.

3. Orthographic rules

These rules are also known as spelling rules. They model
changes when two morphemes combine. Example: fox +
plural s = foxes. Here the e-insertion rule is applied. The
number of paradigms per PARADIGM-INPUT-FILE is
limited to one. More than one paradigm definitions in the

5

AJCST Vol.9 No.2 July-December 2020

Manipuri Morphological Analysis

same file will lead to the particular file being rejected by
morph for having improper number of word forms [6].

TABLE II NOUN PARADIGM TABLE

yuM(root) Category Suffix

yuM-n n.sg+nom(n) -n
yuM-siQ-n n+pl+nom siQ-n
yuM-du-n n.sg+Det+nom -du-n
yuM-si-dgi-di n.sg+Det+Abl+Spec -si-dgi-di

TABLE III PRONOUN PARADIGM TABLE

əikhoi (root) Category Suffix

əikhoi -n pro-pl+nom -n
əikhoi-si-n pro-pl+Det+nom -si-n
əikhoi-n-di pro-pl+nom+spec -n-di
əikhoi-guMb Pro-pl+Semb -guMb

TABLE IV VERB PARADIGM TABLE

KNn (root) Category Suffix

KNn-ri verb+dur -ri
KNn -gni verb+future -gni
KNn -gL-li

verb+ habitual+asp -gL-li

TABLE V ADJECTIVE PARADIGM TABLE

cetpə (root) Category Suffix

cetpə-n adj+sg+nom -n
cetpə-si-n adj+det+nom -si-n
cetpə-du-n adj+Det+nom -du-n

cetpə-si-bu-di adj+Det+acc+Spec -si-bu-di

TABLE VI NUMBER PARADIGM TABLE

təra (root) Category Suffix
təra-si-n num+det+nom -si-n
təra-du-n num+Det+nom -du-n
təra-du-di-n

num+det+spec+nom -du-di-n

təra-du-n-di num+det+conts+spec -du-n-di

TABLE VII ORDINAL PARADIGM TABLE

ənisubə(root) Category Suffix
ənisubə-si-n num+Det+nom -du-n
ənisubə-si-n-di num+det+nom+spec -si-n-di
ənisubə-si-gi num+dt+gen -si-gi
ənisubə-si-dgi-n num+det+abl+conts -si-dgi-n

The above paradigm tables are used to morphological
database. These data are useful as a linguistics source to
improve the Manipuri language. Morphological Analysis
using Finite State Transducers in Manipuri language is
given below as FST for lexicon formation of Manipuri
words from one root.

Fig.1 Formation of Lexicon from one root in more than 280
(might be more) words.

Flow Chart of Morph will show the overview of the
program control from one module to the other. It shows the
decision points in the program.

Fig. 2 Flow Chart for MMA

DFD diagram showing how data are flow in MMA.

Fig.3 Zero Level DFD

Data flow in another way:

6

AJCST Vol.9 No.2 July-December 2020

Y. Bablu Singh, Th. Mamata Devi and Ch Yashawanta Singh

Fig.4 Zero Level DFD

Fig.5 First Level DFD

Here the Figure 7 shown below DFDs is represented as per
the programming concept. How data flows was shown from
LEVEL 0 to 3.

Fig.6 second Level DFD

Fig.7 Architecture of MMA

VI. MORPHOLOGICAL ANALYSIS

In Morphological analysis we take words and we try to
identify the suffix or prefix, and check weather this suffix is
a valid suffix. If this suffix is present in the word-list then it
is a vialed if not it’s an unknown word for Morphological
Analyzer. If the suffix is valid then check weather the stem
is valid or not just, by converting it to root word, by adding
and deleting is done. If the suffix and root words are valid
then take the line number of the word in word-list then get
the feature structure (like gnp, tam, case, case marker
value). Add root word and feature structure to API- wrapper
to print in the data tree.

This program is use as pre-processing module before
tokenizer.

binmode(STDIN, ":utf8");
binmode(STDOUT, ":utf8");
while($line=<>)
{
 utf8::decode($line);
$line =~ s/\x{2018}/'/g; # <2018> ‘ is Replaced by single
quote "'"
$line=~s/\x{2019}/'/g; # <2019> ’ is Replaced by single
quote "'"
$line=~s/\x{201C}/"/g; # <201C> “ is Replaced by single
quote "
$line=~s/\x{201D}/"/g; # <201D> ” is Replaced by single
quote "
$line=~s/\x{200D}//g; # <200D> is Removed
$line=~s/\x{200C}//g; # <200C> is Removed
$line=~s/\x{feff}//g; # <feff> is Removed
$line=~s/\x{0D}//g; #
is Removed
 print $line;
}

7

AJCST Vol.9 No.2 July-December 2020

Manipuri Morphological Analysis

Fig. 8 Process of Morphological Analysis

Manipuri Morphology compiler is a program, which
compiles and analyses words belonging to a Manipuri
language (Meiteilon). It works in Manipuri language using
Meitei Mayek; hence it can learn and recognize words from
Manipuri language, which are written in Meitei script.
Morph has two modes of operation, via the COMPILER
mode and the ANALYSER mode. In the COMPILER mode
it reads information about the words of a language from
paradigm-input files and lexicon-data files and stores the
processed information. This process is referred to as
"compilation of data". Once this has been done Morph can
recognize the words, which were present in the data. All the
data need not be compiled in one go, fresh data can be fed
to morph any time by running it in compiler mode. To
recognize words one has to run morph in its second mode of
operation, which is the ANALYSER mode.

It will recognize only those Manipuri words, which it has
been "taught"i.e. trained data. It outputs all the descriptions
of the given word it has read during compiler mode. It
produces a diagnostic "Unknown word <given word>" to
say that it does not find the word in its list. Compilation
Manipuri data is done by running morph in compiler mode.
While "compiling morph" means putting the morph source
code through the C-compiler, which may be necessary
especially to customize morph program to some specific
need. Compilation of morph is not connected with “data
compilation" or "compilation of data" in any manner. At
times changes may demand recompilation of full data, while
for some changes only recompilation of morph may suffice,
and for some changes both may be called for.

Input- output Specifications:

 Input: TKN
 Output: Morphological Analysis

Input specifications

It requires that property TKN_ must be defined in
the input SSF that is given to the Morphological Analysis

 ADD TKN CAT
 1 rAmA <UNDEF>
 2 sIwA <UNDEF>

Input specifications require that property TKN_ must be
defined in the input SSF that is given to the Morphological
Analyzer.
Output specifications required that Morphological Analyzer
as given below would define property of attribute feature.
So the output SSF must contain Feature structures to all the
valid values.

Output:

An output SSF from Morph must contain all the four
columns of SSF.
The first column will have ADDR
The second column will have TKN
The third column will have CAT as UNDEF
The fourth column will have the feature structure, fs
The feature structure will be in the form of either
abbreviated features, of and/or attribute-value pairs.
If it has two feature structures then separate them
with “ | ” character and between each column there
is a tab that separates the fields.

The possible values of fs is listed below, for all possible
POS

A.Nouns

A noun is analysed as root+suff+{features(such as gender,
number,...)}.

The complete structure is presented below.

<fs af root = “Root of the word”, lcat = “Lexical category of
the root”, gend =“Gender of the word”, num = “Number
coressponding to the word form”, pers = “Person of the
word”, case = “Case (Direct / Oblique)”, vibh = “(cm /
tam)” case_name= “case name”, spec= “Specificity
Marker”, emph =“Emphatic Marker”, dubi = “Dubitative
Marker”, interj = “Interjection Marker” conj = “Conjunction
Marker” hon =”Honorific Marker” agr_gen =”Gender of the
agreeing noun” agr_num =”Number of the agreeing noun”
agr_per =”Person of the agreeing noun” suff =”Form of
suffix representing all the above markers”>

B.Verbs

The verb analysis structure is presented below.

<fsaf root = “Root of the word”, lcat = “Lexical category of
the root”, tam =”Suffix indicating Tense Aspect Modality”,
gend = “Gender of the word”, num = “Number
corresponding to the word form”, pers = “Person of the
word”, spec = “Specificity Marker”, emph = “Emphatic
Marker”, dubi = “Dubitative Marker”, interj = “Interjection
Marker”, conj = “Conjunction Marker”hon = “Honorific
Marker”, neg = “verb-neg Marker”, voice = “Voice”, caus
= “Whether the verb form is causative or not(y/n)”
finiteness = “Whether the verb form is finite or not (y/n)”,
suff = “Suff representing all the above markers”>

8

AJCST Vol.9 No.2 July-December 2020

Y. Bablu Singh, Th. Mamata Devi and Ch Yashawanta Singh

C.Adjectives

The feature structure for Adjectives is as follows:

<fsaf root = “Root”,lcat = “Lexical category”,gend =
“Gender of the word”,num = “Number”,pers = “Person of
the word”, degree= “degree”,-like = “like”, dubi =
“Dubitative”,interr = “Interrogative”, emph = “Emphatic”,
conj = “Conjunction Marker”, ?spec = “Specific”, suff =
“complete suffix”>

D.Adverbs

The feature structuer for Adverbs is presented below.
<fs af root= “Root of the word”, lcat= “Lexical category of
the root”, dubi= “Dubitative Marker”, interr=
“Interrogative”, emph= “Emphatic Marker” conj=
“Conjunction Marker”, ?spec= “Specific”, suff= “complete
suffix”>

E.Noun Locative

The complete structure is presented below.
<fs af root = “Root of the word”, lcat = “Lexical category of
the root”, gend =“Gender of the word”, num = “Number
coressponding to the word form”, pers = “Person of the
word”, case = “Case (Direct / Oblique)”, vibh = “(cm /
tam)”, spec = “Specificity Marker”, emph = “Emphatic
Marker”, dubi = “Dubitative Marker”, nterj = “Interjection
Marker”, conj = “Conjunction Marker”, case_name= “case
name”, hon = “Honorific Marker”, agr_gen = “Gender of
the agreeing noun”, agr_num = “Number of the agreeing
noun”, agr_per = “Person of the agreeing noun”, suff =
“Form of suffix representing all the above markers”>

F.Number

A Numeral is analysed as root+suff+{features(such as
gender, number,...)}.

The complete structure is presented below.

<fs af root = “numer”, lcat =”num” gend =“”, num =“”, pers
=“”, case =“”, vibh =“”, suff =“” >

G. Punctuation

A Punctuation is not analysed just give the NCR.

The complete structure is presented below.

<fs af root = “NCR” lcat =”punc” gend =“” num =“” pers
=“” case =“” vibh =“” suff =“” >

H.Unknown

A Unknown is not analysed and it is just repeatd.
The complete structure is presented below.
<fs af root = “word”, lcat =”unk”, gend =“”, num =“”,
pers =“” case =“”, vibh =“”, suff =“”>

VII. IMPLEMENTATION

The code is separated into parts (subroutines) like command
line parsing, program initialization, error handling and
logging, and the main application. All the
function/subroutines have been defined in the defn.h,
struct.h struct1.h files. It would be better if,
Functions/subroutines are defined in the separate program
files, .cpp file.In the main program they must be called as
subroutines
When a new paradigm file is added, or in an existing .p file
of lines is changed:

a) p file should be placed in pc_data sub dir.
b) Relevant info regarding the category, features & its

values shouldbe entered in Ca, Ce& Fe files in test
area.

Program to convert Meitei Mayek to WX mapping.

The given Perl programs will convert Meitei layout to wx
mapping.

while ($line=<>){

 $line=~s/k([^AeiouO])/ka$1/g;
 $line=~s/s([^AeiouO])/sa$1/g;
 $line=~s/l([^AeiouO])/la$1/g;
 $line=~s/m([^AeiouO])/ma$1/g;
 $line=~s/p([^AeiouO])/pa$1/g;
 $line=~s/n([^AeiouO])/na$1/g;
 $line=~s/c([^AeiouO])/ca$1/g;
 $line=~s/t([^AeiouO])/ta$1/g;
 $line=~s/K([^AeiouO])/Ka$1/g;
 $line=~s/q([^AeiouO])/fa$1/g;
 $line=~s/q/f/g;
 $line=~s/T([^AeiouO])/wa$1/g;
 $line=~s/T/w/g;
 $line=~s/w([^AeiouO])/va$1/g;
 $line=~s/w/v/g;
 $line=~s/y([^AeiouO])/ya$1/g;
 $line=~s/h([^AeiouO])/ha$1/g;
 $line=~s/P([^AeiouO])/Pa$1/g;
 #$line=~s/a([^AeiouO])/aa$1/g;
 $line=~s/g([^AeiouO])/ga$1/g;
 $line=~s/J([^AeiouO])/Ja$1/g;
 $line=~s/r([^AeiouO])/ra$1/g;
 $line=~s/b([^AeiouO])/ba$1/g;
 $line=~s/j([^AeiouO])/ja$1/g;
 $line=~s/G([^AeiouO])/Ga$1/g;
 $line=~s/D([^AeiouO])/Xa$1/g;
 $line=~s/D/X/g;
 $line=~s/B([^AeiouO])/Ba$1/g;
 $line=~s/o/oV/g;
 $line=~s/i/i/g;
 $line=~s/I/i/g;
 $line=~s/A/A/g;
 $line=~s/e/eV/g;
 $line=~s/O/O/g;

9

AJCST Vol.9 No.2 July-December 2020

Manipuri Morphological Analysis

 $line=~s/u/u/g; #secondary u
 $line=~s/U/u/g; #primary u
 $line=~s/Y/E/g;
 $line=~s/z/M/g;
 $line=~s/x/tV/g;
 $line=~s/d([^AeiouO])/xa$1/g;
 $line=~s/d/x/g;
 $line=~s/Q/fV/g;
 $line=~s/C/kV/g;
 $line=~s/L/lV/g;
 $line=~s/M/mV/g;
 $line=~s/F/pV/g;
 $line=~s/N/nV/g;
 print $line;
}

VIII. CONCLUSION AND FUTURE WORK

In the present work, the development of a Manipuri
Morphological Analysis has been described. The root
dictionary stores the related information of the
corresponding roots. The Analyzer can classify the word
classes and sentence types based on the affix information.
The verbs are under bound category. The verb morphology
is more complex than those others. The distinction between
the noun class and verb classes is relatively clear; the
distinction between nouns and adjectives is often vague.
Thus, the assumption made for word categories depend
upon the root category and affix information. In the
stripping of the morphemes the various morphemes pattern
combinations are tested.

The Natural Language Processing tools need more text
corpus with better transfer rules and techniques to achieve
quality output. The performance of the various Manipuri
NLP tools that have been developed in the present work
need to be improved by experimenting with various
machine-learning approaches with more training data.

Future works include the developments of automatic
Morphological Analyzer using some machine learning
algorithms. The exploration and identification of additional
linguistics factors that can be incorporated into the
Morphological Analysis to improve the performance is an
important future task.

Input

(Manipuri)

ADDR_ TKN_ CAT_
1 BoroisIn <NOUN>
2 pahabasisuna <ADJECTIVE>
3 somnA <PRONOUN>

Output

ADDR_ TKN_ CAT_ others_

1 Boroi
 <fsaf='Boroi,n,n,sg,,d,,'>|<fsaf='Boroi,n,m,pl,,d,,'>
2 pahabasisuna

 <fsaf='pahaba,adj,n,sg,3,,su,su'
spec='si_na'>

3 somnA
 <fsaf='som,pron,n,sg,2,,na,su' spec= ‘nA'>

ACKNOWLEDGEMENT

We thank Shallow Parser Tools of Indian Language
(SPTIL), DIT, Project Consortium Leader Prof. G. Uma
Maheswar Rao and the teams. And Girish Nath Jha, DIT
project PI, Indian Language Corpora Initiative (ILCI).

REFERENCES

[1] Grieson, Linguistics Survey of India,Vol.III part III,1973.
[2] Singh Ch.Yashawanta , Manipuri Grammar, Rajesh Publications”,

New Delhi, 2000.
[3] A.Sarangi, Language and Politics in India, Oxford University Press,

Ne Delhi, pp. 27, 2009.
[4] K.Nikhil, I.Abhilash and D.M.Sharma, “Hindi Derivational

Morphological Analyzer. In Proceedings of SIGMORPHON, 2012.
[5] Yumnam Bablu Singh, Web enabled Multilingual Manipuri

Dictionary,
[6] Aksher Bharathi and Rajeev Sangal, et.al, “Natural Language

Processing: A Paninian Perspective”.

10

AJCST Vol.9 No.2 July-December 2020

Y. Bablu Singh, Th. Mamata Devi and Ch Yashawanta Singh

