
Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.7 No.S1, 2018, pp.11-15

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2018.7.S1.1814

SQL Injection Attack on Web Application
S. Parameswari1 and K. Kavitha2

1Research Scholar, 2Assistant Professor
1&2Department of Computer Science and Technology, Annamalai University, Chidambaram, Tamil Nadu, India

E-Mail: eswari105@gmail.com, kavithacseau@gmail.com

Abstract - SQL injection attacks are one of the highest dangers
for applications composed for the Web. These attacks are
dispatched through uncommonly made client information on
web applications that utilizes low level string operations to
build SQL queries. An SQL injection weakness permits an
assailant to stream summons straightforwardly to a web
application's hidden database and annihilate usefulness or
privacy. In this paper we proposed a simplified algorithm
which works on the basic features of the SQL Injection attacks
and will successfully detect almost all types of SQL Injection
attacks. In the paper we have also presented the experiment
results in order to acknowledge the proficiency of our
algorithm.
Keywords: SQL Injection, Hacking, Authentication, Back
Tracking, Intrusion, SQL Queries

I. INTRODUCTION

SQL injection vulnerabilities have been portrayed as a
standout amongst the most genuine dangers for Web
applications [3, 11]. Web applications that are defenseless
against SQL injection may permit an assailant to increase
complete access to their fundamental databases. Since these
databases regularly contain touchy customer or client data,
the subsequent security infringement can incorporate
wholesale fraud, loss of secret data, and misrepresentation.
Sometimes, aggressors can even utilize a SQL injection
weakness to take control of and degenerate the framework
that has the Web application. Web applications that are
powerless against SQL Injection Attacks (SQLIAs) are far
reaching—a study by Gartner Group on more than 300
Internet Web locales has demonstrated that the vast
majority of them could be helpless against SQLIAs. Truth
be told, SQLIAs have effectively focused on prominent
casualties, for example, Travelocity, FTD.com, and Guess
Inc.

SQL injection alludes to a class of code-injection attacks in
which information given by the client is incorporated into
an SQL question in a manner that part of the client's data is
dealt with as SQL code. By utilizing these vulnerabilities,
an aggressor can submit SQL charges straightforwardly to
the database. These attacks are a genuine risk to any Web
application that gets information from clients and fuses it
into SQL questions to a basic database. MostWeb
applications utilized on the Internet or inside big business
frameworks work along these lines and could thus be
defenseless against SQL injection.

The reason for SQL injection vulnerabilities is generally
basic and surely knew: deficient approval of client info. To
address this issue, engineers have proposed a scope of
coding rules (e.g., [18]) that advance protective coding
practices, for example, encoding client data and acceptance.
A thorough and efficient use of these methods is a
compelling answer for avoiding SQL injection
vulnerabilities. Be that as it may, practically speaking, the
application of such methods is human-based and, in this
manner, inclined to blunders. Moreover, settling legacy
code-bases that may contain SQL injection vulnerabilities
can be a greatly work concentrated assignment.

SQL injection attacks represent a genuine security risk to
Web applications: they permit assailants to get unlimited
access to the application and to the conceivably delicate
data its databases contain. In spite of the fact that scientists
and professionals have proposed different strategies to
address the SQL injection issue, current methodologies
either neglect to address the full extent of the issue or have
confinements that keep their utilization and selection.

Key Concepts of SQL Injection:

1. SQL injection is a product defenselessness that happens
when information entered by clients is sent to the SQL
mediator as a part of a SQL question.

Fig. 1 SQL Injection

2. Attackers give exceptionally created info information to
the SQL translator and trap the mediator to execute
unintended charges.

11 AJCST Vol.7 No.S1 November 2018

(Received 8 September 2018; Revised 20 September 2018; Accepted 7 October 2018; Available online 14 October 2018)

3. Attackers use this weakness by giving exceptionally
made information to the SQL mediator in such a way,
to the point that the translator is not ready to recognize
the proposed summons and the aggressors
extraordinarily made information. The mediator is
deceived into executing unintended summons.

4. SQL injection abuses security vulnerabilities at the

database layer. By misusing the SQL injection defect,
aggressors can make, read, adjust, or erase touchy
information.

II. SQL INJECTION ATTACKS TYPES

There are different methods of attacks that depending on the
goal of attacker are performed together or sequentially. For
a successful SQLIA the attacker should append a
syntactically correct command to the original SQL query.
Now the following classification of SQLIAs will be
presented.

A. Tautologies:This type of attack injects SQL tokens to the
conditional query statement to be evaluated always true.
This type of attack used to bypass authentication control and
access to data by exploiting vulnerable input field which use
WHERE clause. “SELECT * FROM employee WHERE
userid = '112' and password ='aaa' OR '1'='1'“ As the
tautology statement (1=1) has been added to the query
statement so it is always true.

B. Illegal/Logically Incorrect Queries:When a query is
rejected, an error message is returned from the database
including useful debugging information. This error
messages help attacker to find vulnerable parameters in the
application and consequently database of the application. In
fact attacker injects junk input or SQL tokens in query to
produce syntax error, type mismatches, or logical errors by
purpose.In this example attacker makes a type mismatch
error by injecting the following text into the pin input field:

Original URL:
http://www.arch.polimi.it/eventi/?id_nav=8864

SQL Injection:
http://www.arch.polimi.it/eventi/?id_nav=8864'

Error message showed:
SELECT name FROM Employee WHERE id =8864\'

From the message error we can find out name of table and
fields: name; Employee; id. By the gained information
attacker can organize more strict attacks.

C. Union Query:By this technique, attackers join injected
query to the safe query by the word UNION and then can
get data about other tables from the application. Suppose for
our examples that thequery executed from the server is the
following:

SELECT Name, Phone FROM Users WHERE Id=$id By
injecting the following Id value:

$id=1 UNION ALL SELECT creditCardNumber,1 FROM
CreditCarTable

We will have the following query:
SELECT Name, Phone FROM Users WHERE Id=1
UNION ALL SELECT creditCardNumber,1
FROM CreditCarTable which will join the result of the
original query with all the credit card users.

D. Piggy-backed Queries:In this type of attack, intruders
exploit database by the query delimiter, such as “;”, to
append extra query to the original query. With a successful
attack database receives and execute a multiple distinct
queries. Normally the first query is legitimate query,
whereas following queries could be illegitimate. So attacker
can inject any SQL command to the database. In the
following example, attacker inject “ 0; drop table user “ into
the pin input field instead of logical value. Then the
application would produce the query: SELECT info FROM
users WHERE login='doe' AND pin=0; drop table users
Because of “;” character, database accepts both queries and
executes them. The second query is illegitimate and can
drop users table from the database. It is noticeable that some
databases do not need special separation character in
multiple distinct queries, so for detecting this type of attack,
scanning for a special character is not impressive solution.

E. Stored Procedure:Stored procedure is a part of database
that programmer could set an extra abstraction layer on the
database. As stored procedure could be coded by
programmer, so, this part is as inject able as web application
forms. Depend on specific stored procedure on the database
there are different ways to attack. In the following example,
attacker exploits parameterized stored procedure.

CREATE PROCEDURE DBO.isAuthenticated
@userName varchar2, @pass varchar2, @pin int AS
EXEC(“SELECT accounts FROM users WHERE login=‘“
+@userName+ “‘ and pass=‘“ +@password+ “‘ and pin=“
+@pin); GO For authorized/unauthorized user the stored
procedure returns true/false. As an SQLIA, intruder input
― ‘SHUTDOWN; - -‖ for username or password.

After that, this type of attack works as piggy-back attack.
The first original query is executed and consequently the
second query which is illegitimate is executed and causes
database shut down. So, it is considerable that stored
procedures are as vulnerable as web application code.

F. Inference:By this type of attack, intruders change the
behavior of a database or application. There are two well-
known attack techniques that are based on inference: blind-
injection and timing attacks.

1. Blind Injection: Sometimes developers hide the error
details which help attackers to compromise the database. In

12AJCST Vol.7 No.S1 November 2018

S. Parameswari and K. Kavitha

this situation attacker face to a generic page provided by
developer, instead of an error message. So the SQLIA
would be more difficult but not impossible. An attacker can
still steal data by asking a series of True/False questions
through SQL statements.Consider two possible injections
into the login field:

SELECT accounts FROM users WHERE login=‘doe’ and
1=0 -- AND pass= AND pin=0 SELECT accounts FROM
users WHERE login=‘doe’ and 1=1 -- AND pass= AND
pin=0

If the application is secured, both queries would be
unsuccessful, because of input validation. But if there is no
input validation, the attacker can try the chance. First the
attacker submit the first query and receives an error
message because of “1=0”. So the attacker does not
understand the error is for input validation or for logical
error in query. Then the attacker submits the second query
which always true. If there is no login error message, then
the attacker finds the login field vulnerable to injection.

III. RELATED WORK AND LITERATURE SURVEY

Ke Wei et al., [1] proposed a novel system to guard against
the attacks focused at stored procedures. This strategy joins
static application code investigation with runtime approval
to kill the event of such attacks. In the static section, a put
away technique parser is planned, and for any SQL
proclamation which relies on upon client inputs, this parser
is utilized to instrument the fundamental articulations
keeping in mind the end goal to contrast the first SQL
explanation structure with that including client inputs. The
sending of this system can be robotized and utilized on a
need-just premise.

William G.J. Halfond et al., [2] displayed a broad audit of
the diverse sorts of SQL injection attacks known not. For
every sort of assault, portrayals and cases of how attacks of
that sort could be performed are given. He also presented
and broke down existing discovery and aversion systems
against SQL injection attacks. For every system, its
qualities and shortcomings are talked about in tending to
the whole scope of SQL injection attacks.

William G.J. Halfond et al., [3] proposed another
exceptionally computerized approach for element discovery
and counteractive action of SQLIAs. Instinctively, this
methodology works by recognizing “trusted” strings in an
application and permitting just these trusted strings to be
utilized to make the semantically important parts of a SQL
inquiry, for example, watchwords or administrators. The
general component that we use to actualize this
methodology depends on element polluting, which checks
and tracks certain information in a project at runtime.

SruthiBandhakavi et al., [4] proposed a straightforward and
novel component, called Candid, for mining developer
expected inquiries by powerfully assessing keeps running

over benevolent competitor inputs. This component is
hypothetically very much established and depends on
surmising proposed inquiries by considering the typical
inquiry registered on a system run. This methodology has
been actualized in an apparatus called Candid that retrofits
Web applications written in Java to protect them against
SQL injection attacks.

Jin-Cherng Lin et al.,[5] introduced a propelled proposition
embracing the idea of utilization level security entryway
and more successfully determining the issue than
comparable doors or intermediaries. This framework
comprises of discovery testing, acceptance capacities and
redirection instrument.

Mehdi Kiani et al., [6] portrayed an irregularity based
methodology which uses the character conveyance of
certain segments of HTTP solicitations to recognize already
inconspicuous SQL injection attacks. This methodology
requires no client collaboration, and no alteration of, or
access to, either the backend database or the source code of
the web application itself. Its commonsense results
recommend that the model proposed in this paper is better
than existing models at distinguishing SQL injection
attacks. Specialists additionally assess the adequacy of the
model at recognizing distinctive sorts of SQL injection
attacks.

Yu Chin Cheng et al., [7] proposed a sort of novel
Embedded Markov Model (EMM) to recognize diverse web
application attacks, screen the on-line client conduct and
safeguard the vindictive client immediately. Contrasting
with past web application attacks distinguishing approaches,
this EMM methodology can identify client's refuted data
mistakes as well as discover the nonsensical page move
conduct. By identifying outlandish page move, we can
quickly safeguard the pernicious or senseless client conduct
to maintain a strategic distance from the further web
framework disappointments and touchy data exposure.

HossainShahriar et al., [8] proposed a change based testing
approach for SQLIV testing. He proposed nine
transformation administrators that infuse SQLIV in
application source code. The administrators result in
mutants, which can be slaughtered just with test information
containing SQL injection attacks. By this methodology, they
constrained the era of sufficient test information set
containing powerful experiments equipped for uncovering
SQLIV. They executed a Mutation-based SQL Injection
vulnerabilities checking (testing) device (MUSIC) that
consequently produces mutants for the applications written
in Java Server Pages (JSP) and performs transformation
investigation.

NunoAntunes et al., [9] proposed another programmed
approach for the identification of SQL Injection and X-Path
Injection vulnerabilities. In this approach an agent workload
is utilized to practice the web administration and a vast
arrangement of SQL/X-Path Injection attacks are connected

13 AJCST Vol.7 No.S1 November 2018

SQL Injection Attack on Web Application

to uncover vulnerabilities. Vulnerabilities are recognized by
looking at the structure of the SQL/X-Path charges issued in
the nearness of attacks to the ones beforehand realized
when running the workload without attacks. This
methodology performs much superior to anything known
apparatuses (counting business ones), accomplishing to a
great degree high identification scope while keeping up the
false positives rate low.

Dwen-RenTsai et al., [10] proposed an ideal tuning
technique using the application firewall generally utilized
by the cutting edge endeavours. They investigated a few
assaulting techniques generally utilized these days, for
example, the mark of cross-site scripting and SQL injection,
and acquainted another strategy with setup the parameters
of the gadget to reinforce the barrier. To improve the
security of the back-end application servers, they utilized
catchphrase sifting and re-treatment to administer through
the boycott, and to conform the framework settings to the
goal that it can adequately hinder the ambushes or decrease
the likelihood of fruitful attacks. What's more, they
additionally re-enacted attacks to web searching and
application through helplessness checking instruments to
test the security of utilization framework and to ensure the
important protection of the ideal tuning parameters.

Ivano Alessandro et al., [11] introduced an exploratory
assessment of the viability of five SQL Injection
identification instruments that work at various framework
levels: Application, Database and Network. To test the
devices in a sensible situation, Vulnerability and Attack
Injection is connected in a setup in light of three web uses
of various sizes and complexities.

Xin Wang et al., [12] proposed a component of SQL
injection helplessness location in view of concealed web
slithering and actualize a distinguishing framework with the
motivation behind raising the website page scope and
upgrading the SQL injection powerlessness recognizing
capacity of web scanner. Analysts joined verification with
the crawler model, and discovered SQL injection
helplessness by mimicking web assaulting and breaking
down the information of reaction.

TIAN Wei et al., [13] proposed another testing strategy for
chasing SQL injection, in which the injection parameters
can be separated into a few arrangements of identicalness
classes as per the characterized multi-barrier levels of test
web frameworks. By infusing the most illustrative
parameters chose from every proportionality classes, the
fake assault testing for chasing SQL injection can be
extremely successful and minimal effort.

Zhang Xin-hua et al.,[14] proposed static examination
apparatuses ASPWC to recognize XSS attacks and SQL
injection vulnerabilities in light of spoil investigation, It
tracks different sorts of outside info, labels pollute sorts,
building control stream chart is developed taking into
account the utilization of information stream investigation
of the important data, corrupt information spread to

different sorts of weakness capacities, and distinguish the
XSS or SQL Injection helplessness in web application's
source code. Tests demonstrated that the identification
methodology is a compelling way; it can be utilized to
identify the XSS and SQL Injection weakness in the web
application program in light of ASP innovation
improvement.

Lijiu Zhang et al., [15] proposed a novel way to deal with
recognize web application vulnerabilities. In this
methodology, given a URL, Researchers get an objective
web structure. Subsequent to examining attributes of this
web structure, Researchers allocate an arrangement of test
qualities to each held in this structure. At that point they
proposed a technique to produce test suites considering the
heaviness of every test esteem. At long last, they executed
those test suites and broke down comparing result in light of
HTTP reaction code and reaction HTML. They
implemented this approach into an instrument called D-
WAV and picked a few web applications as benchmarks to
lead observational studies. Last results demonstrated that
this methodology can naturally and viably find web
application vulnerabilities, for example, cross-website
scripting and SQL injection.

IV. METHODOLOGY

A new algorithm is presented to protect Web applications or
even the desktop application against SQL injection Attacks.
SQL Injection Attacks are a class of attacks that many of
these systems are highly vulnerable to, and there is no
known foolproof defense against such attacks. Some
predefined methods and integrated approach of encryption
method with secure hashing can be applied in the database
to avoid attack on login phase. This combined method will
be applied to a system where user‘s information is kept and
the designing of this system will be done by using .Net.

A. Algorithm Proposed: In your proposed concept we have
proposed an algorithm, which will be used for performing a
check that the query fired by the user is an SQL Injection or
not.

The algorithm contains the following steps:

1. First the Query is provided as input in the form which

we created for the Query Analysis.
2. In the First Check the Query is check for the DROP

keyword as, to avoid SQL Injection which can delete
the table structure.

3. In the Second check we check for the validity of the
SQL statement, in order to check whether it is proper
SQL statement i.e. begins with SELECT, INSERT etc.

4. In the third check we will avoid the SQL Injection for
the value '1'='1' , this type of injection can be given in
various ways , so we implemented this in two sub
section , firstly containing OR statement , where we
split the query on the basis of OR keyword and then
checked the parameters for similarity and if same then
it SQL Injection Attack and second a simple Query

14AJCST Vol.7 No.S1 November 2018

S. Parameswari and K. Kavitha

which contains only statements like '1'='1' is handled
after checking presence of = and checking parameters
for equality.

5. Then we have check for the queries with intension of
knowing the tables in the databases.

6. Finally we have checked the queries with have no
results, just fired in order to know the table structure.

V. EXPERIMENTAL RESULTS

In this we have performed some SQL Injection queries on
the simple unprotected interface and on the algorithm
which is proposed by us. Below mentioned table presents
the result of the analysis which we have performed.

TABLE I RESULT OF ANALYSIS WE HAVE PERFORMED

Pattern String Pattern Expected Result

Secure Insecure
1 ‗OR‖=‘ Login failed Login Successful

2 0‘ or ‗1‘=‘1 Login failed Login Successful

3 1‘ or ‗1‘=‘1 Login failed Login Successful

4 ‗ OR ‗1‘=‘1‘ Login failed Login Successful

5 1‘ or ‗a‘=‘a Login failed Login Successful

6 ; and 1=1 and 1=2 Login failed Login Successful

7 ― ‘ or 1=1 - -― Login failed Login Successful

8 OR '1'='1'“ Login failed Login Successful

9. emp_id= 'x' AND emp_name IS NULL Attack Identified Columns retrieved

10. Select * From Employee; Drop TableEmployee Attack Identified Table Employee Deleted

11. Select Table_Name FromInformation_Schema.Tables Attack Identified Table Names in thedatabase

VI. CONCLUSION

SQL-Injection is a relatively simple technique and on the
surface protecting against it should be fairly simple.
Auditing all of the source code and protecting dynamic
input is not trivial, neither is reducing the permissions of all
application users in the database itself. It is possible to
develop a filter to prevent SQL-Injection. Checking through
log files, making sure that code is perfectly secure and
relying on the least privileges principle does not seem
sufficient. It is difficult to detect attacks and again, an audit
of log is required. The use of packet sniffers does not allow
for the prevention of damage as the packets collected do not
allow for the removal of malicious SQL query statements.
Provide useful information on the impact of the TDSProxy
on web interface usage. The future enhancement of this
paper is extended to handle other databases such as
MySQL, Oracle and Postgres as well as other operating
systems and involve an investigation into the performance
impact of the proxy server on data transfer.

REFERENCES

[1] A. Petukhov and D. Kozlov, “Detecting Security Vulnerabilities in

Web Applications Using Dynamic Analysis with Penetration Testing,
“Proceedings of Application Security Conference, Ghent, Belgium, 19-
22 May, 2008.

[2] K. Ahmad, J. Shekhar, and K.P. Yadav, “A Potential Solution to
Mitigate SQL Injection Attack,”VSRD Technical & Non-Technical
Journal, Vol.1, No. 2, pp. 145-152, 2010.

[3] B. Indrani and E. Ramaraj, “An Approach to Detect and Prevent SQL
Injection Attacks in Database Using Web Service,”IJCSNS
International Journal of Computer Science and Network Security,
Vol.11 No.1, January 2011.

[4] P. Ramasamy and S. Abburu,“SQL Injection Attack Detected and
Prevention,”International Journal of Engineering Science and
Technology (IJEST), Vol. 4, No.04, April 2012.

[5] S. Manmadhan and Manesh T, “A Method of Detecting SQL Injection
Attack to Secure Web Applications,”International Journal of
Distributed and Parallel Systems (IJDPS), Vol.3, No.6, Nov. 2012.

[6] L. Kishori and K. Sunil, “Detection and Prevention of SQL-Injection
Attacks of Web Application Using Comparing Length of SQL Query,”
Vol. 1, February, 2012.

[7] A.Keromytis, and V. Prevelakis, “Countering codeinjection attacks
with instruction-set randomization in Proceedings of the 10th
ACM,”Conference on Computer and Communication Security
Washington D.C., pp. 272-280.

[8] BojkenShehu, and AleksanderXhuvani“A literature Review and
comparative analysis on SQL injection: Vulnerabilities, attacks and
their detection and prevention Techniques”International Journal of
Computer Science Issues, Vol. 11, No. 1, 2014

[9] Hussein AlNabulsi, IzzatAlsmadi, and Mohammad AlJarrah“Textual
Manipulation for SQL Injection attack” I.J. computer Network and
Information Security, 2014

[10] F. Valeur, D. Mutz, and G. Vigna“A learning-based approach to the
detection of SQL attacks”LNCS, Vol. 3548, pp. 123-140, 2005.

[11] A. Anitha, and V. Vaidehi, “Context based Application Level Intrusion
Detection System” in Washington, DC, USA: IEEE Computer Society,
pp. 16, 2006.

[12] L. Chen, Z. Li, C. Gao, and Y. Liu, “Modeling and Analyzing
Dynamic Forensics System Based on Intrusion Tolerance” in
Washington, DC, USA:IEEE Computer Society, pp. 230-235, 2009.

[13] C.J. Ezeife, J. Dong, and A.K. Aggarwal, “SensorWebIDS: A Web
Mining Intrusion Detection System”, International Journal of Web
Information Systems, Vol. 4, pp. 97-120, 2007.

[14] E.Bertino, A.Kamra, and J. Early, “Profiling Database Application to
Detect SQL Injection Attacks”, In the Proceedings of 2007 IEEE
International Performance, Computing, and Communications
Conference, 2007

[15] William G.J. Halfond, Alessandro Orso, and Panagiotis Manolios,
“WASP: Protecting Web Applications Using Positive Tainting and
Syntax-Aware Evaluation”, IEEE Transactions on Software
Engineering, Vol. 34, No. 1, pp. 65-81, 2008.

15 AJCST Vol.7 No.S1 November 2018

SQL Injection Attack on Web Application

