
Adaptive Load Sensing and Rebalancing for Distributed File System in
Cloud Environment

B. Nithya Poojaiah1 and Suryabahadur2
1M.Tech (CSE), 2Assistant professor(CSE), MITS, Madanapalle,Chittoor, India

E-mail: ramanjulu.it@gmail.com, suryabahadur@mits.ac.in

Abstract - Large scale distributed systems such as cloud
computing applications are becoming very common. These
applications come with increasing challenges on how to transfer
and where to store and compute data. This system presents an
innovative idea in cloud computing. In a giant cloud we are able
to add thousands of nodes together. The main aim is to allot
fi les to those nodes while not creating signifi cant load to any
of the nodes, for that fi les square measure partitioned off into
completely different modules. Another objective is to cut back the
network inconsistencies and network traffi c attributable to the
unbalancing of hundreds. The reduction of network inconsistency
can result in maximization of network information measure in
order that so many numerous such a big amount of, such a giant
amount of, such a lot of large applications will run in it. Because
of ability to quantify property, we are able to add, delete,
update new nodes in order that it supports heterogeneousness
of the system. To enhance the potential of nodes we tend to
use Distributed fi le system in Cloud Computing Applications.

Keywords: fi le system, Cloud, Chunk server, Rebalance

I.INTRODUCTION

 Cloud Computing is a technology that uses the internet
and central remote servers to maintain data and applications.
Extensive scale disseminated frameworks, for example,
distributed computing requisitions are getting to be
exceptionally basic. These requisitions accompany expanding
tests on the most profi cient method to exchange and where
to store and register information. This framework introduces
a creative thought in distributed computing. In a goliath
cloud we have the ability to include many hubs together. The
primary point is to assign records to those hubs while not
making critical burden to any of the hubs, for that documents
square mark divided off into totally diverse modules. An
alternate target is to decrease the system inconsistencies and
system activity attributable to the unbalancing of hundreds.
The lessening of system confl ict can bring about expansion
of system data measure in place that such a large number
of various such an enormous measure of, such a monster
measure of, such a ton of extensive requisitions will run in it.
Due to capability to quantify property, we have the capacity
to include, erase, redesign new hubs in place that it upholds
heterogeneousness of the framework. To upgrade the potential
of hubs we have a tendency to utilize Distributed record
framework as a part of Cloud Computing Applications.

II. SYSTEM OVERVIEW

The basic concepts of cloud computing which are required to
do the project, means how clouds will store the data and what
are the techniques required to provide security for the data
while transferring storing and while retrieving the data from
clouds.

 The concepts related to the project those are central node
manage ment and distributed fi le systems. And how to provide
service to the user of different sectors. This helps how node
management will provide service to different users.

A.Existing System With Disadvantages

Emerging distributed fi le systems depends on a central node
for module reallocation. Will so become the performance
bottleneck and therefore the single purpose of failure. Load
balance based on distributed fi le system which is not based on
central node. The rebalancing task would performed by the
each node individually. Due to this complexity will occur.

III.PROPOSED ARCHITECTURE

A.Proposed System

In previous systems load balancing task will be based
on central node. And based on distributed fi le systems with
considering total cloud . The rebalancing algorithm will be
applied for all nodes with in the cloud. There fore the original
data will be moved from one node to other which is far away
from node to which the user will connect and send his request.
At fi rst the original user requested data will be at fi rst node
to which the user will be connect. Before getting user request
some rebalancing tasks may be performed. At that time the
data will be moved to the node which is far away to the
user. To give response to the user they would re balance total
cloud with out considering the path through which the chunk
will move from user connected node to current node. We will
consider that path and apply re balancing algorithm for that
path only. While rebalancing the chunk will be moved to
previous node that is we migrate the fi le chunks to the
previous node without randomly selecting node for
migration.

 Now-a-days the forceful technology is CLOUD computing.
In this technology the patrons have organizing of resources
and also without any complicated deployment they assign

AJCST Vol. 3 No. 2 July - December 20149

Asian Journal of Computer Science and Technology
ISSN: 2249-0701 (P) Vol.3 No.2, 2014, pp.9-11

© The Research Publication, www.trp.org.in
DOI: https://doi.org/10.51983/ajcst-2014.3.2.1734

(Received 8 June 2014; Revised 29 June 2014; Accepted 12 July 2014; Available online 20 July 2014)

vigorously their resources. The disseminated fi le systems,
Map Reduce programming paradigm, virtualization are the
important technologies used for clouds.

 The comprising entity will be gradually not succeeded
so that they connect to maintain system consistency. The
clouds will be used in huge range because of the emphasizes
scalability gives by this technique. In Map Reduce
programming paradigm, the disseminated fi le systems are the
important structure blocks in cloud computing application.
The node provides storage space and also continuously serves
computing in this fi le system. The Map Reduce problems will
be performed in equivalently over the nodes by using the fi le
can be partitioned into many number of chunks are assigned
in separate nodes.

 The distributed hash table (DHT) generalized for providing
entity storage space and their repossession by using DHT-
based p2p systems like as chord, pastry, Tapestry and CAN.
By the hypothetical approach in DHT’s they imagined that
the nodes in the systems are homogeneous in resources. On
condition that the DHT have two restrictions. Primarily,
they do not generate perfect load balancing in DHT’s the
object ID’s are used to resorting the strandization of the hash
function. The following one is they do not take into account
of the heterogeneity behavior of p2p systems, through the
uniform structure of overlaid network.

 The user can contact with each and every accessible
object competently is the main objective of p2p systems is to
attach all accessible resources in the p2p network. As the p2p
system “competently “is interpreted as determined to make
certain fair load disseminated along with the individual peer
node. The outcome of achieving load balance in DHT is the
essential consequence.

 Which answerable for an adjusted allotment of the DHT
location space. First and foremost, the regular irregular part
of the location space around hubs is not totally adjusted. A
few hubs wind up with a bigger part of the locations and
along these lines get a bigger parcel of the haphazardly con-
veyed things. A critical issue in Dhts is burden adjust the
even circulation of things (or other burden measures) to hubs
in the DHT. This comes about the uneven conveyance of
module servers.

Uniformly allocation of chunks with out search the a.
chunk server for user request.
We aim to reduce network traffi c.b.
Improve the overall system performance.c.
Improve the overall user satisfaction.d.

B.System Architecture:
The Overall Architecture of the project that shows the
workfl ow of the entire proposed system.

Fig.1 Load Balancing

Advantages
Overcome dependency on central node.a.
Reduce movement cost.b.
Reduce load imbalance factor.c.
Overcome performance bottleneck.d.
Consider the path through which chunk will be e.

travel in spite of considering whole cloud. More importantly
reduce access time.

IV. MODULES AND IMPLEMENTATION

A. Modules
File Partitioning
A fi le can be upload by a client that fi le can be partitioned
into number of fi xed size chunks. Nodes will be allocated
by these fi le chunks. Based on key value pair portioned will
occur. Among nodes parallel perform map reduce tasks. For
example, each chunk has the same size 64Mbytes.

Collect Load Status
A gossip based aggregation protocol is used to collect the
load status of node in the system. This protocol executes
a thread to the nodes which allocates the chunks to the
node and also contains the load information along with
ID and network address. Each node performs the load
rebalancing algorithm independently.

Identify Chunk update in Node
The load of the chunk server is proportional to the number
of chunks hosted by the server. Hence the number of fi le
that a node handles may increase day by day, also the fi le
chunks which are stored in different node gets deleted
dynamically in any of the nodes in the system. Here we
identify the chunk deletion of fi les which are stored in
different nodes.

B. Nithya Poojaiah and Suryabahadur

AJCST Vol. 3 No. 2 July - December 2014 10

Migrate Chunks to the Previous Node

When there is a fi le chunk deletion in a node, we
migrate the fi le chunks to the previous node in the
system without randomly selecting nodes for fi le chunk
reallocation. Thereby fi le chunks can be reallocated to
the nodes uniformly and also we can reduce the migration
time of the fi le chunks in the system.

Algorithm:

Optimal Path Load Rebalancing Algorithm
Here we assume the entire node have identical capacity
and node can handles equal number of chunks.
Assumptions:

F= {f1, f2 ,f3, ….. fr}
Ni={n1,n2,n3……….ns}
G= defi nes capacity of node
Boolean fl ag=false
Boolean full=true
m =defi nes the total number of nodes in the system
s =defi nes the number of chunks in nodes
b= fi les splitted into number of chunks based on fi le size
ck=defi nes the number of chunks

Input : Set of nodes /chunk servers
Output: Migrating chunks to previous node
for (i=1;1<=m; i++) {
if (Ni!=G) {
for (j=1; j<=s; j++) {
for (k=1; k<=b: k++) { Ni[ns] = f[ck] } }
else { return Ni as heavy node} for (k=1; k<=b; k++) {
if(ck==NULL)
{fl ag= false; }
else
{ fl ag=true; } if (ck==fl ag)
{ Ni+1 migrate its
load ck to Ni } }
}

V. CONCLUSION AND FUTURE WORK

A load rebalancing algorithm to deal with rebalancing
problem in large scale, dynamic and distributed fi le
systems in cloud has been presented in this system.
Our proposal strives to balance the load of nodes and
reduce the demanded movement cost as much as
possible. Our proposal is comparable to the centralized
algorithm in HDFS and DFS can be incorporated in
Single Node or Multi Node cluster environment. The
load balancing tasks c a n b e p e r f o r m e d b y t h e
n o d e s i n d e p e n d e n t l y , without synchronization
or global knowledge regarding the system. In a load
balance cloud the resources can be well utilized and
provisioned, maximizing the performance of Map Reduce
based applications. The algorithm also outperforms the

competing distributed in terms of movement cost and load
imbalance factor.

REFERENCES

[1] Andersen, D. Resilient overlay networks. Master’s thesis,
Department of EECS, MIT, May 2001. http://nms.lcs.mit.edu/
projects/ron/.

[2] Bakker, A., Amade, E., Ballintijn, G., Kuz, I., Verkaik,P., Van Der
Wijk, I., Van Steen, M., and Tanenbaum., A.The Globe distribution
network. In Proc. 2000 USENIXAnnual Conf. (FREENIX Track)
(San Diego, CA, June 2000), pp. 141-152.

[3] Chen, Y., Edler, J., Goldberg, A., Gottlieb, A., Sobti, S., AND
YIANILOS, P. A prototype implementation of archival intermemory.
In Proceedings of the 4th ACM Conference on Digital libraries
(Berkeley, CA, Aug. 1999), pp. 28-37.

[4] CLARKE, I. A distributed decentralised information storage and
retrieval system. Master’s thesis, University of Edinburgh, 1999.

[5] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. Freenet: A
distributed anonymous information storage and retrieval system. In
Proceedings of the ICSI Workshop on Design Issues in Anonymity
and Unobservability (Berkeley, California, June 2000). http://
freenet.sourceforge.net.

[6] Dabek, F., Brunskill, E., Kaashoek, M. F., Karger, D., Morris, R.,
Stoica, I., and Balakrishnan, H. Building peer-to-peer systems with
Chord, a distributed location service. In Proceedings of the 8th
IEEE Workshop on Hot Topics in Operating Systems (HotOS-VIII)
(Elmau/Oberbayern, Germany, May 2001), pp. 71-76.

[7] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and STOICA, I.
Wide-area cooperative storage with CFS. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP ‘01) (To
appear; Banff, Canada, Oct. 2001).

[8] DRUSCHEL, P., AND ROWSTRON, A. Past: Persistent and
anonymous storage in a peer-to-peer networking environment. In
Proceedings of the 8th IEEE Workshop on Hot Topics in Operating
Systems (HotOS 2001) (Elmau/Oberbayern, Germany, May 2001),
pp. 65-70.

[9] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/
NIST, National Technical Information Service, Springfi eld, VA,
Apr. 1995.

[10] Gnutella. http://gnutella.wego.com/.
[11] Karger, D., Lehman, E., Leighton, F., Levine, M., Lewin, D., AND

PANIGRAHY, R. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (El Paso, TX, May 1997), pp. 654-663.

[12] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, s., Eaton, P.,
Geels, D., Gummadi, R., Rhea, s., Weatherspoon, H., Weimer, W.,
Wells, C., and Zhao, B. OceanStore: An architecture for global-
scale persistent storage. In Proceeedings of the Ninth international
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2000) (Boston, MA, November
2000), pp. 190-201.

[13] LEWIN, D. Consistent hashing and random trees: Algorithms for
caching in distributed networks. Master’s thesis, Department of
EECS, MIT, 1998. Available at the MIT Library, http://thesis.mit.
edu/.

Adaptive Load Sensing and Rebalancing for Distributed
File System in Cloud Environment

AJCST Vol. 3 No. 2 July - December 201411

